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ABSTRACT

Electrical network analysis from associated system
matrices generally results in determinants which are
awkward to handle because computation becomes labori -
ous with an appreciable number of meshes. This paper
is a study of several ladder -type networks where recur -
sion formulas for the system determinants are solved
by the method of finite differences. It appears that a
broad class of networks are amenable to this type of
analysis and certain generalizations of the subject
method are set forth.

PROBLEM STATUS

This is an interim report on this problem; work is
continuing.
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A FINITE DIFFERENCE SOLUTION OF RECURRENT NETWORKS

INTRODUCTION

It is well known that electrical networks can be analyzed from the standpoint of their
associated system matrices. In general, however, the resulting determinants become
awkward to handle. Should a circuit have an appreciable number of meshes, the computa-
tions become extremely laborious. The present paper is a study of several ladder-type
networks, uniform and otherwise where recursion formulas for the system determinants
are obtained which are then solved by the method of finite differences. It appears that a
broad class of networks are amenable to this analysis. With the ladder-type circuits as
points of departure, certain generalizations of the method are set forth.

THEORY

A basic recurrent ladder network is illustrated in Figure 1.

ZI Z, Z, ZI

e
< 2 Z2 13 Z2 Z2

Figure 1

By definition,

Z + 2Z 2 =S (1)

and Z2 = B (2)

Then the loop equations become, in matrix notation,

P: ] (3)

-BJ

1o - ~
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where designating the first matrix on the right hand side as [Mij

Mi. = S (4)

M. + i+ 1, i - -B (5)

M.. = 0 (j4i, j4i+l) (6)li

Equation (3) could also be written

[E] [M(n)] [H (7)
the argument denoting the number of meshes in the system.

With S + 0, let

B = p (8)

The case of S = 0 is considered later.

It follows, therefore, that

[E] S [Q(n)] [1] (9)

where

1 -p 0

Q(n) = 1 Pý N
[o (10)

A complete analysis of the circuit, Figure 1, requires evaluation of the determinant
of [M(n)] , its zeros, and its first cofactors.

Defining the determinant of IM(n)J = D(n) (11)

and the determinant of [Q(n)] = A(n) (12)

then D(n) = Sn A(n) (13)

SOLUTION OF A (n)

Consider the determinant A (n).

Expansion by the first row (column) results in

A(n) = A(n-1) - ? A(n-2) (14)

Where A (n-l), A (n-2) are determinants of the same form as A (n) but of dimensions
(n-1), (n-2), respectively.
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Assume a solution

A(n) = CA' (15)

where C and A are constants.

Direct substitution into (14) yields

An = A n-l-p 2An- 2  (16)

or

A2 -A+p 2 = 0 (17)

yielding

A - 1± )

2 (18)

Defining A. and A2 as

Al = 1 + {--4p2 and A 2 = 1- 1-4p2 (19)

2 2

The complete solution is then

A(n) = CI An+ C2An (20)

since (14) is a linear finite difference equation and (16) through (18) justify choice of
bases Al and A2 . Where C1 and C 2 are arbitraiy constants, it should be noted that

Al + A2 = 1 (21)

A, A2 = p2  (22)

To evaluate the constants C1 and C2 , two boundary conditions are required.

By definition of A (n)

A(1) = 1 (23)

A(2) = 1-p2 (24)

Using (20) through (24), it follows that
- A. A2

C' = - an d C2 = A2-A (25)

Hence the complete solution becomes

1= .... A [A2 A n+1] (26)
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The solution (26) can be transformed into a more convenient form by the following
substitutions:

Let
A, = Re (27)

A2 = Re-2

Hence R= t )/A1A (28)

Choose R = + yA1A2  (29)

By (22) R also equals p
1

Consequently, cosh q$ = p (30)

or, referring p back to the circuit parameters,
Zoh 1=•+2z 2 -1 + Z1

cosh 2 Z2  2Z2  (31)

The angle q6 is recognized as the propagation constant of the network.

By means of the transformation (27)

A(n) = n+1 e -e (32)or ~P [eO-'¢

orL4

A(n) = pn sinh (n+1)4 (33)
sinh4

and D(n) = Bn sinh (n+l)•' (34)
sinhb

Since B =Z2

= 2n sinh (n+1)0 (35)
D(n)-(35

sinh qb
where

95 = cosh- (36)

Equations (35) and (36) were obtained by assuming

S-Z 1 +2Z'tO

If S 0, it follows that

D(n) =-Z 22 D(n-2) (37)

D(1) = 0 (38)

D(2) = -Z 2
2 (39)
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Solving (37), and using the boundary conditions (38) and (39),

D(n) =jn Zn [(-)n+l-11 (40)
2

Hence

D(n) = 0 if S 0 and n is odd, and (41)

D(n) = (- 1 )n/2 Z n when S = 0 and n is even. (42)
2

ZEROS OF D(n)

To obtain the natural modes of vibration of the system, which are required in analyzing
the transient behavior, the zeros of D(n) must be evaluated.

If B= Z = 0 then from (3) D(n) =Sn= Z n

Thus, unless Z1 and Z2 are zero simultaneously, Z2 = 0 does not yield a zero of D(n).

The preceding analysis shows that only zeros of sinh (n+1)0 need be considered.S~sinho

kiTIf sinh (n+1)0 = 0,• = j- .

However, since sin kiT = 0, k = 0 and k = n+1 must be excluded.

Hence zeros occur when k = 1, 2, ... , n

Specifically, then, since cosh j 9 = cos 0, zeros are determined by p 1/2 sec kiT
n+i

(43)

It should be noted that equation (41) yields a possible source of zeros, namely if n is
odd and S = 0.

This case corresponds to choosing k = n+1/2 in (43), and solving for p. The solution is
p -o, i.e. S = 0.

The circuit of Figure 2 may be considered as an example.

R R R

0e~~ CT CGIj

Figure 2

Z =R, Z = 1/•p where p is the required angular frequency mode.
1, 1 /
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Zeros occur when cos -1- =l[ n+ 1 -

GENERAL STEADY STATE BEHAVIOR

To determine the steady state currents, it is necessary to evaluate the first cofactors
of D(n). If the driving voltage is placed in the first mesh, the relevant cofactors are DI .(n)
(j = 1, 2, ... , n) and for applied voltages in the k-th mesh, Dk (n) (j =1, 2, ... , n).

By a Laplacian expansion about the first (r-1) rows of Dr, r+k (n), it is apparent that

Dr, r+k (n) = Bk D(r-l) D(n-r-k) (44)

with the convention that D(O) = 1

Since D(n) is symmetric

Dkj(n) = Djk(n) (45)

or Dr+k,r (n) = Bk D(r-1) (D-n-r-k) (46)

Hence, for a voltage e, applied to the first mesh, the current in the k-th mesh is

given by D (n)
=k _ k e =BRk-1I D(n-k)e
--- D(n) e1  D(n) 1 (47)

and substituting the appropriate values from (2) and (35),

sinh (n-k+1) q e(
ii = Z2 sinh (n+l)o e (48)

Similarly for voltage in the jth mesh

Bj'k D(k-1) D(n-j) (kj) (49)
ik = D(n) ej

sinh k 0 sinh (n-j) (5or ikj Z 2z sinh (n+ 1) 0b sinhobe
3

Bk-j D(j-1) D(n-k) e. (kyj) (51)and 'k e(>j)(1
D(n)

which is equivalent to

sinh L # sinh (n-k) e J
ikj- Z2 sinh (n+l)4' sinho ej (kyj) (52)

Finally, for voltages e, e 2, .. .en in all the loops

2k Z sinh 1) 0 sinh 0 sinhj lsinh (n-k) 4 + Z+ et sinh k q5 sinh (n-t) 0
2 J t= k+1(53)



NAVAL RESEARCH LABORATORY 7

GENERAL TRANSIENT BEHAVIOR

The preceding analysis carries over to the transient case as well. For the steady
state, Z2 and 0 are functions of the impressed angular velocities, w. for the transient case
they are the same functions of the natural modes p . The amplitudes of the transient cur-
rents are proportional to the cofactors D'k (n). If j t k, the cases of j>k and j<k must be
distinguished as in equations (50) and (511.

TAPERED LADDER STRUCTURE

The preceding analysis applies to a uniform ladder structure. In this section the

applicability of the method to a nonuniform structure will be indicated.

Consider the network of Figure 3.

Z KZI K2 ZI K"'I Zi

Figure 3

Let S. be the self impedance of the j-th loop

S, = ZL + (i+k) Z2  (54)

S. = Kj-1 S, (55)

The system determinant, D' (n), becomes

S1 -k 2  0

D' (n) = -kZ2  kn-1Z (56)

n-nlz'

0 kn-lZ2 S

Removing the factor kj-l from the j-th row yields
SI -kZ2  0

D' (n):= k.k2 ... kn-1 -Z 2 • •(57)

kZ2

0 -Z 2 S1
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and expanding by the first row of the determinant results in

D' (n) = k'1/A [D D' (n-1) - k Z2 D' (n-2) (58)

which can be solved by the same method as that for the uniform ladder structure.

Let p' = 4/ (59)

Then D' (n) - kn/2 Zn Qt (n) (60)

I -kp' 0

Where Q' (n) = '•p (61)

O-•p'\1

Expanding Q' (n) by its first row (or column)

Q' (n) = Q' (n-1)- kp' 2 Q, (n-2) (62)

Hence, p' Vk-replaces p of the uniform ladder structure.

The solution of (62) becomes

D' (n) = kn?/2 Z n sinh (n+1)46'
sinh ,'

where cosh q5' ___ 1 1 + (lik)Z2 (2p' VI [, L2Z1 2Z2

For k = 1, the solution reduces to that of the uniform ladder. The currents are obtained
in a similar manner.

CONCLUSIONS

The preceding analysis applies to networks actuated by ideal generators. The case
for generators and loads of arbitrary impedance can be readily obtained for the steady
state; the transient case involves the solution of a transcendental equation which cannot,
in general, be expressed in a closed form but requires design curves. With the more
common types of terminations, however, transient solutions are obtainable.

PR1 C- 5405- 4-22-48-100
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